N-jettiness as a Jet Algorithm Jesse Thaler Originally implemented in 1108.2701 with Ken Van Tilburg Code development with Chris Vermilion (now in FastJet Contrib) Preliminary studies with Iain Stewart and Frank Tackmann April 5, 2013 — Snowmass @ BNL ### Uses of N-(sub)jettiness N-jettiness: T_N as global jet veto [Stewart, Tackmann, Waalewijn: 1004.2489] N-subjettiness: T_N/T_{N-1} for N-prong substructure [JDT, Van Tilburg: 1011.2268 & 1108.2701] As a Jet Algorithm: Identify jets by minimizing T_N [JDT, Van Tilburg; Stewart, Tackmann, JDT, Vermilion in progress] Today: Exclusive Higgs + N jet σ from p_T veto on (N+1)-th jet from (N+1)-jettiness ## N-Jettiness as a Jet Algorithm N-Jettiness as a Jet Algorithm Comparison to Anti- k_T for Exclusive Higgs σ 2-Jettiness for Boosted Higgs N-Jettiness as a Jet Algorithm ### I-Jettiness as a Jet Algorithm I-jettiness minimization: Stable cone finding! Minimize over axis: $$p_{ ext{jet}} = \sum_k p_k$$ in cone Tönnesmann] Usual cone algorithms: Find all stable cones (local minima of T_I) Apply split/merge criteria (see also "Optimal Jet Finder" [Grigoriev, Jankowski, Tkachov], Jet Energy Flow Project, k-means clustering algorithm, ...) ### N-Jettiness as a Jet Algorithm N-jettiness: choose axes n_i to minimize T_N #### Identifies exactly N jets, no split/merge needed [Reasonably fast algorithm for $1 \le \beta \le 3$ in 1108.2701; available from FastJet Contrib] Adjustable Exponent #### 2-Jettiness Jets β = I: Jet Axis \neq Jet Momentum \hookrightarrow Good for checking β = 2: Jet Axis = Jet Momentum \rightleftharpoons jet systematics? [JDT, Van Tilburg: 1108.2701] #### Generalizing the Measure $$\tau_N = \sum_k \min \left\{ \rho_1(p_k), \, \rho_2(p_k), \, \dots, \, \rho_N(p_k), \, \rho_{\mathrm{beam}}(p_k) \right\}$$ Jet regions from competition #### Today: Perfectly Circular Cones [Available from FastJet Contrib for $1 \le \beta \le 3$] $$\rho_{\text{beam}} = p_{T,k} (R_0)^{\beta}$$ $$\rho_{\text{i}} = p_{T,k} (\Delta R_{k,i})^{\beta}$$ #### Eventually: Calculationally-Friendly Cones $$\rho_{\text{beam}} = \dots$$ $$\rho_{\text{i}} = \dots$$ #### "Geometric E Measure" (Calculationally-Friendly Footballs) [Jouttenus, Stewart, Tackmann, Waalewijn: 1302.0846] Comparison to Anti- k_T for Exclusive Higgs σ ### Two "Cone-like" Algorithms Anti-k_T: N-jettiness: Arbitrary # of jets Exactly N jets (exclusive cone algorithm) For well-separated jets: N-hardest anti-k_T = T_N minimization In jet overlap regime ($\Delta R < R_0$): Must Merge lets Can Split Jets In noisy environment: "Nibbling Effect" Always πR^2 area (up to jet overlap) #### High-pt Events BOOST 2010 Samples (R = 1.0): Anti- k_T vs. 2-jettiness (β = 2) Nearly Identical Jets $\approx 93\%$ match hardest jet e.g. for QCD dijets: $\approx 81\%$ match two hardest jets #### Effect of β BOOST 2010 Samples (R = 1.0): Anti-kT vs. 2-jettiness (β = 1) β = 1: "Median axis" Less sensitive to contamination β = 2: "Mean axis" Jet axis = Jet momentum (like anti-k_T) #### Exclusive Higgs + N jet O p_T veto on (N+1)-th jet from anti- k_T vs. (N+1)-Jettiness Pythia 8 (default tune, R = 0.5) [See backup slide for original use of T_N as veto] #### Impact of Pileup I-jettiness: Always one cone of area πR^2 Anti-k_T: (anti-)nibbling more pronounced in noisy environment Jet p_T corrected with area subtraction [Cacciari, Salam,Soyez] Jet boundary not corrected using this method #### Questions for Audience: What degree of Jet Energy Scale systematic from (anti-)nibbling? Is it N_{PV} dependent? Pythia 8 (default tune, R = 0.5) #### **Bottom Line** N-jettiness: Well-suited to analyses with fixed N Trade offs in e.g. exclusive Higgs + N jet σ : Computational Speed $(Anti-k_T)$ Perfect Cones vs. (N-jettiness) #### Open question: Theory uncertainties? #### Algorithmic subtlety: Current code uses (anti-) k_T as starting point to find local minimum of T_N Fast, reliable, well-defined, and IRC safe. Better option? [Global minimum of T_N impractical: $O(k^{2N+1} \log k)$ for k particles] 2-Jettiness for Boosted Higgs ## Intelligent Partitioning [In progress: Stewart, Tackmann, JDT, Vermilion] ### Intelligent Partitioning [In progress: Stewart, Tackmann, JDT, Vermilion] ### Interpolating the Higgs? #### The Boosted Higgs Search $$q\bar{q} \to Z^* \to ZH$$ $\downarrow \downarrow b\bar{b}$ $\downarrow \ell^+\ell^-$ $$p_T^{ m merge} \simeq \frac{2m_H}{R_0}$$ Signal: Two hardest anti-k_T vs. 2-jettiness ## N-Jettiness as a Jet Algorithm $$\tau_N = \sum_k \min \{ \rho_1(p_k), \, \rho_2(p_k), \, \dots, \, \rho_N(p_k), \, \rho_{\text{beam}}(p_k) \}$$ Three Choices: Jet Measure, Beam Measure, Axes (e.g. minimization) N-Jettiness as a Jet Algorithm Comparison to Anti- k_T for Exclusive Higgs σ 2-Jettiness for Boosted Higgs [JDT, Van Tilburg; Stewart, Tackmann, JDT, Vermilion in progress] Backup #### Exclusive Higgs + N Jet O Signal with N desired jets, veto extra jets Two Operating Modes with T_N Original N-Jettiness Paper N-Jettiness as Jet Algorithm Identify N jets with e.g. N-jettiness Identify N+1 jets with (N+1)-jettiness Global jet veto with T_N Local p_T veto on (N+I)-th jet Theoretical Advantage (global observable) Experimental Advantage (nearly identical to anti- k_T) Experimental Disadvantage (sensitivity to 4π , though ways to mitigate) Theoretical Disadvantage (non-global observable, though ways to mitigate)